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In this chapter you'll:

= Use an include guard.
m Access class members via an object’s name, a reference or a pointer.
Use destructors to perform “termination housekeeping.”

Learn the order of constructor and destructor calls.

Learn about the dangers of returning a reference to private data.

Assign the data members of one object to those of another object.

Create objects composed of other objects.

m Use friend functions and friend classes.

= Use the this pointer in a member function to access a non-static class member.
= Use static data members and member functions.
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Introduction

 This chapter takes a deeper look at classes.

» Coverage Includes:

— The example also demonstrates using an /ncluae
guard in headers to prevent header code from
being included in the same source code file more
than once.

— We demonstrate how client code can access a

cl

0
0

ass’s pub 11 c members via the name of an
nject, a reference to an object or a pointer to an

nject.

— We discuss access functions that can read or write
an object’s data " nmembers.



9.1 Introduction (cont.)

« Coverage Includes (cont.):

— How default arguments can be used in
constructors.

— Destructors that perform “termination
housekeeping” on objects before they’re destroyed.

— The orderin which constructors and destructors
are called.

— We show that returning a reference or pointer to
private data breaks the encapsulation of a class,
allowing client code to directly access an object’s
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9.1 Introduction (cont.)

« Coverage Includes (cont.):

— const objects and const member functions to
prevent modifications of objects and enforce the
principle of least privilege.

— Composition—a form of reuse in which a class can
have objects of other classes as members.

— Frienaship to specify that a nonmember function
can also access a class’s non-public members—a
technique that’s often used in operator overloading
for performance reasons.

— th1is pointer, which is an implicit argument in all
calls to a class’s non=static member functions,



9.2 Ti1me Class Case Study

 Our first example (Fig. 9.1) creates class T1me
and tests the class.
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Good Programming Practice 9.1

For clarity and readability, use each access specifier only
once in a class definition. Place pub1ic members first,

where they’re easy to locate.
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Software Engineering Observation 9.1

Each member of a class should have private visibility
unless it can be proven that the element needs public
visibility. This is another example of the principle of
least privilege.
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// Fig. 9.1: Time.h
// Time class definition.
// Member functions are defined in Time.cpp

// prevent multiple inclusions of header

#ifndef
#define

// Time class definition
class Time
{
public:
Time(); // constructor
void setTime( int, 1int, int ); // set hour, minute and second
void printUniversal() const; // print time in universal-time format
void printStandard() const; // print time in standard-time format
private:
unsigned int hour; // 0 - 23 (24-hour clock format)
unsigned int minute; // 0 - 59
unsigned int second; // 0 - 59
}; // end class Time

#endif

Fig. 9.1 | Time class definition.
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9.2 Time Class Case Study (cont.)

* In Fig. 9.1, the class definition Is enclosed in the following

Include guard:

// prevent multiple inclusions of header file
#ifndef TIME_H
#define TIME_H

#endif

— Prevents the code between #1ifndef and #endif from being
included if the name TIME_H has been defined.

— If the header has notbeen included previously in a file, the name
TIME_H is gefinedby the #define directive and the header file
statements are included.

— If the header has been included previously, TIME_H is defined
already and the header file is not included again.
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% Error-Prevention Tip 9.1

@ Use #ifndef, #define and #endif preprocessing
directives to form an include guard that prevents headers
from being included more than once in a source-code

file.
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Good Programming Practice 9.2

By convention, use the name of the header in uppercase
with the period replaced by an underscore in the
#1fndef and #def1ine preprocessing directives of a
header.
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9.2 Time Class Case Study (cont.)

Time Class Member Functions
* InFig. 9.2, the T1me constructor (lines 11-14) initializes the data
members to 0—the universal-time equivalent of 12 AM.
 Invalid values cannot be stored in the data members of a T1me object,
because the constructor is called when the T1me object is created, and
all subsequent attempts by a client to modify the data members are
scrutinized by function setT1ime (discussed shortly).

* You can define overfoaded constructors for a class.
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// Fig. 9.2: Time.cpp

// Time class member-function definitions.

#include <iostream>

#include <iomanip>

#include <stdexcept> // for invalid_argument exception class
#include // include definition of class Time from Time.h

using namespace std;

VO~ UBNDE WN =

10 // Time constructor initializes each data member to zero.
Il Time::Time(Q)

12 : hour( ), minute( ), second( )
13 {

14 1} // end Time constructor

15

Fig. 9.2 | Time class member-function definitions. (Part 1 of 3.)
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