
Chapter 9

Classes: A Deeper Look;

Throwing Exceptions
C++ How to Program, 9/e

©1992-2014 by Pearson
Education, Inc. All Rights

Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.1 Introduction

• This chapter takes a deeper look at classes.

• Coverage includes:

– The example also demonstrates using an include
guard in headers to prevent header code from
being included in the same source code file more
than once.

– We demonstrate how client code can access a
class’s public members via the name of an
object, a reference to an object or a pointer to an
object.

– We discuss access functions that can read or write
an object’s data members.

– We also demonstrate utility functions—private
member functions that support the operation of the
class’s public member functions.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.1 Introduction (cont.)

• Coverage includes (cont.):

– How default arguments can be used in

constructors.

– Destructors that perform ―termination

housekeeping‖ on objects before they’re destroyed.

– The order in which constructors and destructors

are called.

– We show that returning a reference or pointer to

private data breaks the encapsulation of a class,

allowing client code to directly access an object’s

data.

– We use default memberwise assignment to assign

an object of a class to another object of the same

class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.1 Introduction (cont.)

• Coverage includes (cont.):

– const objects and const member functions to

prevent modifications of objects and enforce the

principle of least privilege.

– Composition—a form of reuse in which a class can

have objects of other classes as members.

– Friendship to specify that a nonmember function

can also access a class’s non-public members—a

technique that’s often used in operator overloading

for performance reasons.

– this pointer, which is an implicit argument in all

calls to a class’s non-static member functions,

allowing them to access the correct object’s data

members and non-static member functions.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.2 Time Class Case Study

• Our first example (Fig. 9.1) creates class Time

and tests the class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.2 Time Class Case Study (cont.)

• In Fig. 9.1, the class definition is enclosed in the following
include guard:

 // prevent multiple inclusions of header file
#ifndef TIME_H
#define TIME_H
 ...
#endif

– Prevents the code between #ifndef and #endif from being
included if the name TIME_H has been defined.

– If the header has not been included previously in a file, the name
TIME_H is defined by the #define directive and the header file
statements are included.

– If the header has been included previously, TIME_H is defined
already and the header file is not included again.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.2 Time Class Case Study (cont.)

Time Class Member Functions

• In Fig. 9.2, the Time constructor (lines 11–14) initializes the data
members to 0—the universal-time equivalent of 12 AM.

• Invalid values cannot be stored in the data members of a Time object,
because the constructor is called when the Time object is created, and
all subsequent attempts by a client to modify the data members are
scrutinized by function setTime (discussed shortly).

• You can define overloaded constructors for a class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

