Chapter 9
Classes: A Deeper Look;

Throwing Exceptions
C++ How to Program, 9/e

©1992-2014 by Pearson
Education, Inc. All Rights
Reserved.

In this chapter you'll:

= Use an include guard.
m Access class members via an object’s name, a reference or a pointer.
Use destructors to perform “termination housekeeping.”

Learn the order of constructor and destructor calls.

Learn about the dangers of returning a reference to private data.

Assign the data members of one object to those of another object.

Create objects composed of other objects.

m Use friend functions and friend classes.

= Use the this pointer in a member function to access a non-static class member.
= Use static data members and member functions.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

9.9
9.10
9.11
9.12
9.13
9.14
9.15

Introduction

Time Class Case Study

Class Scope and Accessing Class Members

Access Functions and Utility Functions

Time Class Case Study: Constructors with Default Arguments
Destructors

When Constructors and Destructors Are Called

Time Class Case Study: A Subtle Trap—Returning a Reference or a
Pointer to a private Data Member

Default Memberwise Assignment

const Objects and const Member Functions
Composition: Objects as Members of Classes
friend Functions and friend Classes

Using the this Pointer

static Class Members

Wrap-Up

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Introduction

 This chapter takes a deeper look at classes.

» Coverage Includes:

— The example also demonstrates using an /ncluae
guard in headers to prevent header code from
being included in the same source code file more
than once.

— We demonstrate how client code can access a

cl

0
0

ass’s pub 11 c members via the name of an
nject, a reference to an object or a pointer to an

nject.

— We discuss access functions that can read or write
an object’s data " nmembers.

9.1 Introduction (cont.)

« Coverage Includes (cont.):

— How default arguments can be used in
constructors.

— Destructors that perform “termination
housekeeping” on objects before they’re destroyed.

— The orderin which constructors and destructors
are called.

— We show that returning a reference or pointer to
private data breaks the encapsulation of a class,
allowing client code to directly access an object’s

d t ©1992-2014 by Pearson Education, Inc. All
a a. Rights Reserved.

9.1 Introduction (cont.)

« Coverage Includes (cont.):

— const objects and const member functions to
prevent modifications of objects and enforce the
principle of least privilege.

— Composition—a form of reuse in which a class can
have objects of other classes as members.

— Frienaship to specify that a nonmember function
can also access a class’s non-public members—a
technique that’s often used in operator overloading
for performance reasons.

— th1is pointer, which is an implicit argument in all
calls to a class’s non=static member functions,

9.2 Ti1me Class Case Study

 Our first example (Fig. 9.1) creates class T1me
and tests the class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Good Programming Practice 9.1

For clarity and readability, use each access specifier only
once in a class definition. Place pub1ic members first,

where they’re easy to locate.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 9.1

Each member of a class should have private visibility
unless it can be proven that the element needs public
visibility. This is another example of the principle of
least privilege.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

OoOo~NOTUnNHh WN=

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// Fig. 9.1: Time.h
// Time class definition.
// Member functions are defined in Time.cpp

// prevent multiple inclusions of header

#ifndef
#define

// Time class definition
class Time
{
public:
Time(); // constructor
void setTime(int, 1int, int); // set hour, minute and second
void printUniversal() const; // print time in universal-time format
void printStandard() const; // print time in standard-time format
private:
unsigned int hour; // 0 - 23 (24-hour clock format)
unsigned int minute; // 0 - 59
unsigned int second; // 0 - 59
}; // end class Time

#endif

Fig. 9.1 | Time class definition.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.2 Time Class Case Study (cont.)

* In Fig. 9.1, the class definition Is enclosed in the following

Include guard:

// prevent multiple inclusions of header file
#ifndef TIME_H
#define TIME_H

#endif

— Prevents the code between #1ifndef and #endif from being
included if the name TIME_H has been defined.

— If the header has notbeen included previously in a file, the name
TIME_H is gefinedby the #define directive and the header file
statements are included.

— If the header has been included previously, TIME_H is defined
already and the header file is not included again.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

% Error-Prevention Tip 9.1

@ Use #ifndef, #define and #endif preprocessing
directives to form an include guard that prevents headers
from being included more than once in a source-code

file.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Good Programming Practice 9.2

By convention, use the name of the header in uppercase
with the period replaced by an underscore in the
#1fndef and #def1ine preprocessing directives of a
header.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.2 Time Class Case Study (cont.)

Time Class Member Functions
* InFig. 9.2, the T1me constructor (lines 11-14) initializes the data
members to 0—the universal-time equivalent of 12 AM.
 Invalid values cannot be stored in the data members of a T1me object,
because the constructor is called when the T1me object is created, and
all subsequent attempts by a client to modify the data members are
scrutinized by function setT1ime (discussed shortly).

* You can define overfoaded constructors for a class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

// Fig. 9.2: Time.cpp

// Time class member-function definitions.

#include <iostream>

#include <iomanip>

#include <stdexcept> // for invalid_argument exception class
#include // include definition of class Time from Time.h

using namespace std;

VO~ UBNDE WN =

10 // Time constructor initializes each data member to zero.
Il Time::Time(Q)

12 : hour(), minute(), second()
13 {

14 1} // end Time constructor

15

Fig. 9.2 | Time class member-function definitions. (Part 1 of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

